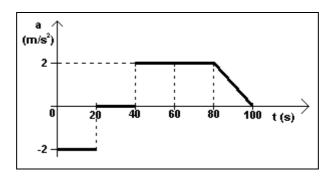


INSTITUTO POLITÉCNICO DE TOMAR

Escola Superior de Tecnologia de Tomar Área InterDepartamental de Física

Exame de Recurso de Física Curso de Engenharia Civil

Duração: 2^h30^{min} + 15^{min} (tolerância)


10 de Fevereiro de 2010

Leia com atenção o enunciado

As dúvidas interpretativas são esclarecidas nos primeiros 15 minutos da prova

Considere o valor da aceleração da gravidade, g = 9,80 ms⁻²
Identifique os símbolos que utilizar Justifique as suas respostas

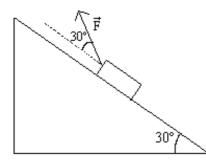
- 1. O gráfico abaixo representa a variação do valor da aceleração com o tempo, de uma partícula que se desloca com movimento rectilíneo, na direcção do eixo XX. Sabendo que o corpo está inicialmente em repouso.
- 1a) [1,0 val.] Determine um intervalo de tempo em que existe movimento uniforme
- **1b)** [1,5 val.] Calcule a expressão da velocidade da partícula em cada um dos intervalos, e represente-a graficamente em função do tempo para o intervalo de [0,100] s.
- 1c) [1,0 val.] Determine um instante em que a partícula inverte o sentido do movimento.
- **1d)** [1,5 val.] Determine o deslocamento e o espaço percorrido pela partícula no intervalo de tempo [0,80] s.

2. Para medir a aceleração da gravidade à superfície da Terra, foram realizadas várias medidas com um pêndulo gravítico simples. O comprimento do pêndulo é de 35,62 ± 0,15 cm. O pêndulo com a massa de 22,57 ± 0,16 g oscilou com uma amplitude de 5°. A tabela seguinte contém os valores experimentais do período de oscilação. Despreze todos os efeitos de atrito.

Período, s
1,1996
1,2013
1,2001
1,2004
1,1988
1,2005

- 2a) [1,0 val.] Determine o valor da aceleração da gravidade.
- **2b)** [2,0 val.] Calcule o erro associado a esse valor de aceleração, e o respectivo erro relativo.
- 3a) [2,0 val.] Defina física e matematicamente o conceito de força, enunciando a 2ª lei de *Newton*.
 3b) [2,0 val.] Enuncie a Lei da Conservação do Momento Angular, indicando alguns exemplos práticos da sua verificação.

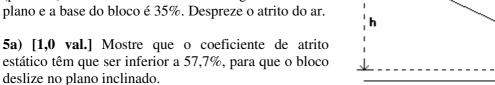
Exame de Recurso de Física Engenharia Civil 2010-02-10


INSTITUTO POLITÉCNICO DE TOMAR

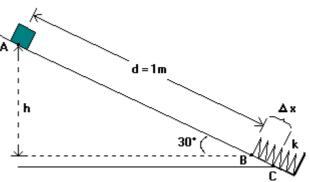
Escola Superior de Tecnologia de Tomar Área InterDepartamental de Física

4. Um bloco de massa 5 kg encontra-se em movimento num plano inclinado com atrito, sob acção de uma força com 70 N de intensidade, que faz com o plano um ângulo de 30°, como mostra a figura abaixo. O

coeficiente de atrito cinético de deslizamento entre o corpo e o plano (inclinado de 30° com a direcção horizontal) é de 30%.



4a) [1,0 val.] Represente e identifique num esquema todas as forças aplicadas no corpo.


4b) [1,5 val.] Determine o vector aceleração do movimento do bloco.

4c) [1,5 val.] A força F deixa de ser aplicada. Nessa situação, determine o menor ângulo do plano inclinado que permita ao bloco deslocar-se com movimento rectilíneo e uniforme ao longo do plano.

5. Um bloco de massa 2 kg, inicialmente em repouso num plano inclinado de 30° com a horizontal, é largado do ponto A. O bloco percorre uma distância de 1 m até embater numa mola com constante elástica k=1000 Nm⁻¹ (ponto B). O atrito cinético de escorregamento entre o plano e a base do bloco é 35%. Despreze o atrito do ar.

5b) [1,5 val.] Qual a velocidade do objecto em B?
5c) [1,5 val.] Calcule a compressão máxima da mola elástica, Δx.

Formulário

$x(t) = x_o + v_0(t)$	$(t-t_0) + \frac{1}{2}a(t-t_0)$	$(v^2 = v^2)$	$(x_0)^2 + 2a(x - x_0)$	$\vec{v} = \vec{\omega}$	$\langle \vec{r} \qquad \vec{a} = \vec{\omega} \times \vec{v}$
$h_{\text{max}} = \frac{{v_0}^2 sen^2}{2g}$	$\frac{\alpha}{D_{\text{max}}} =$	$\frac{{v_0}^2 sen2\alpha}{g}$	$(\Delta Z)^2 = \left(\frac{\partial f}{\partial A}\right)$	$^{2}\Delta A^{2} + \left(\frac{\partial f}{\partial B}\right)^{2} A^{2}$	$\Delta B^2 + \dots$
$\vec{p} = m \vec{v}$	$\vec{F}_{res} = \frac{d\vec{p}}{dt}$	$\vec{F}_{res} = m\vec{a}$	$\vec{I} = \vec{p} - \vec{p}_0$	$\Delta \; \vec{p}_1 = -\Delta \; \vec{p}_2$	$W = \vec{F} \cdot \vec{l}$
$F_a = \mu N$	$\vec{F}_T = m \frac{dv}{dt} \vec{u}_T$	$\vec{F}_N = 0$	$\frac{mv^2}{\rho}\vec{u}_N$	$\vec{F}_{el} = -k \overrightarrow{\Delta x}$	$\vec{F} = \vec{\omega} \times \vec{p}$
$\vec{M}_0 = \vec{r} \times \vec{F}$	$\vec{M}_0 = I \vec{\gamma}$	$\vec{M}_0 = \frac{d\vec{L}_0}{dt}$	$\vec{l}_0 = \vec{r} \times \vec{p}$	$\vec{L} = I\vec{\omega}$	$I_{particula} = mr^2$
$I_{\it disco} = I_{\it cilindro} =$	$=\frac{1}{2}mr^2$ (eixo perp	endicular)	$I = I_{CM} + Ma^2$	$\vec{r}_{CM} = \vec{r}_{CM}$	$\frac{m_1\vec{r}_1 + m_2\vec{r}_2 + \dots + m_n\vec{r}_n}{m_1 + m_2 + \dots + m_n}$
$P = \frac{dW}{dt}$	$E_{ct} = \frac{1}{2}mv^2$	$E_{cr} = \frac{1}{2}I\omega^2$	$\Delta E_{pg} = mg\Delta h$	$E_{pel} =$	$\frac{1}{2}k\Delta x^2$
$y(t) = A\sin(\omega t)$	$(t+\varphi_0)$	$a(t) = \frac{dv}{dt} = -$	$-\omega^2 x(t)$	$T=2\pi$	$T\sqrt{\frac{l}{g}} \qquad T = 2\pi\sqrt{\frac{m}{k}}$
$y(t) = A_0 e^{-\gamma t/2}$	$\sin(\boldsymbol{\omega}'t + \boldsymbol{\varphi}_0)$ co	om $\omega' = \sqrt{\omega_0^2 - \omega_0^2}$	$-\gamma^2/4$		45° 60°
•	n α cos β ± sin β in α sen β ∓ cos			$\frac{\sin(\alpha)}{\cos(\alpha)} \frac{1/2}{\sqrt{3}/2}$	